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The recent spectacular success of machine learning in the sciences points to the 
emergence of a new artificial intelligence trading zone. The epistemological 
implications of this trading zone, however, have so far not been studied in depth. 
Critical research on machine learning systems, in media studies, visual studies, 
and “critical AI studies,” in the past five years, has focused almost exclusively on 
the social use of machine learning, producing an almost insurmountable backlog 
of deeply flawed technical reality. Among this backlog, one machine learning 
technique warrants particular attention from the perspective of media studies and 
visual studies: the generative adversarial network (GAN), a type of deep 
convolutional neural network that operates primarily on image data. In this 
paper, I argue that GANs are not only technically but also epistemically opaque 
systems: where GANs seem to enhance our view of an object under investigation, 
they actually present us with a technically and historically predetermined space of 
visual possibilities. I discuss this hypothesis in relation to established theories of 
images in the sciences and recent applications of GANs to problems in astronomy 
and medicine. I conclude by proposing that contemporary artistic uses of GANs 
point to their true potential as engines of scientific speculation. 

Introduction 
We must have images because only images can teach us. Only 
pictures can develop within us the intuition needed to proceed 
further towards abstraction. […] And yet: we cannot have images 
because images deceive. Pictures create artifactual expectations, 
they incline us to reason on false premises. We are human, and as 
such are easily led astray by the siren call of material specificity. 
(Galison 2006, 236) 
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In late October 2020, in the midst of a global pandemic and political turmoil, 
the Turing Institute, Great Britain’s most important computer science 
research institute, announced a new project with the remarkable title “AI for 
Scientific Discovery: Developing Artificial Intelligence Systems Capable of 
Nobel-Quality Discoveries by 2050.”1 As with all things artificial intelligence, 
it is important to consider the economic and political interests behind such 
a claim, particularly when it reaches this far into an uncertain future. But 
while automated “Nobel-quality” research may remain unattainable, machine 
learning for science has come a long way since the beginning of the current 
“AI summer” around 2012. Most recently, a machine learning system seems 
to have “solved” protein folding in biology, at least within the constraints of 
the CASP assessment (Senior et al. 2020). Moreover, researchers in physics 
have started to utilize machine learning systems to (re)discover physical laws 
(Udrescu and Tegmark 2020b; Iten et al. 2020) or to directly derive symbolic 
representations from observations (Greydanus, Dzamba, and Yosinski 2019; 
Udrescu and Tegmark 2020a; Cranmer et al. 2020): “from pixels to physics.”2 

Others claim nothing less than to have found a viable way of simulating the 
quantum foundations of matter itself, with the help of machine learning (Pfau 
et al. 2020). 

Surprisingly, the epistemological implications of this new trading zone 
(Galison 2011) in the making have so far not been studied in depth. In fact, 
critical research on artificial intelligence systems, in media studies, visual 
studies, and “critical AI studies,” in the past five years, has focused almost 
exclusively on either the history of AI (for instance, its relation to cybernetics) 
or on its contemporary sociopolitical use.3 And while the significant individual 
and societal harm of applications like facial recognition and predictive policing 
has indeed warranted this kind of attention, this narrow focus of the “critical 
disciplines” has produced an almost insurmountable backlog of technical 
reality. 

In this paper, I argue that, among the artificial intelligence systems that make 
up this backlog, one warrants particular attention from the perspective of 
media studies and visual studies: the generative adversarial network (GAN), a 
type of deep convolutional neural network that operates primarily on image 
data. While GANs have been studied in the context of so-called “deep fakes” 

See https://www.turing.ac.uk/research/research-projects/turing-ai-scientist-grand-challenge. Two examples of similar albeit more modestly 
designed projects are the new NSF AI Institute for Artificial Intelligence and Fundamental Interactions (https://iaifi.org/) and the “cluster of 
excellence” “Machine Learning: New Perspectives for Science” at Tübingen University (https://uni-tuebingen.de/en/research/core-research/
cluster-of-excellence-machine-learning/home). 

Both of these papers were recently presented at a workshop at Emory University, aptly named “Can Machine Learning Learn New Physics, or 
Do We Need to Put It In by Hand?” A recording is available here: https://www.youtube.com/watch?v=DRh1OlGlRxo. See also Raghu and 
Schmidt (2020) for an overview of machine learning approaches to “scientific discovery.” 

One exception is the nascent VW-funded research project “How Is AI Changing Science?” See https://howisaichangingscience.eu/. 
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(so, again, as an explicitly political technique) and as a creative tool, their 
distinctive role in the sciences—in astronomy, medicine, chemistry, and 
biology, among others—has gone largely unnoticed. 

The paper’s main hypothesis is simple: GANs, as specific technical objects, 
inevitably produce an epistemic opacity that goes beyond the well-known 
general technical opacity of artificial intelligence systems (Pasquale 2015). In 
the sciences, GANs “pass” as optical media. But while they seem to enhance 
our view of an object under investigation—be it galaxies, cancer cells, or brain 
waves—they actually present us with a technically and historically 
predetermined space of visual possibilities: what there is to know is what is 
already known. The epistemic thing falls back to, and is completely determined 
by, the technical object (Rheinberger 1997), and technical legacy determines 
epistemic faculty. 

In the following pages, I present a close reading of GANs and GAN-based 
techniques in the sciences to validate this hypothesis. Specifically, I explore 
the role of GANs in astronomical and medical imaging, including the GAN-
based enhancement of images of galaxies, the use of GANs to translate between 
different types of MRI image formats, and the application of GANs to the 
visual interpretation of brain waves. I conclude by proposing that 
contemporary artistic uses of GANs point to their true potential as engines of 
scientific speculation. 

The Epistemic Oscillation of Scientific Images 
Because of their complicated epistemic status, scientific images have long been 
a core concern of the history of science and science and technology studies. 
Those same “technical” (Bredekamp, Schneider, and Dünkel 2012), “systemic” 
(Hinterwaldner 2017), or “operational” (Pantenburg 2016) images present an 
ongoing challenge to visual studies and art history. 

As Peter Galison reminds us in the above epigraph, we desperately need images 
to make sense of the world. At the same time, we fall so easily for their “siren 
call of material specificity” (Galison 2006, 300). As objects in the world, their 
simple presence often obfuscates their inadequacy as vehicles of representation. 
We should not rely on them too much or hope they will speak the truth. At the 
same time, without images, we “cannot proceed further towards abstraction,” 
simply because we cannot think in purely symbolic operations. “By mimicking 
nature, an image, even if not in every respect, captures a richness of relations 
in a way that a logical train of propositions never can. Pictures are not just 
scaffolding, they are gleaming edifices of truth itself that we hope to reveal” 
(Galison 2006, 300). This dialectic of the image, then, materializes as a “battle 
between iconoclasm and iconophilia” in twentieth-century science. 

Examining this same dialectic, Bruno Latour argues that images, specifically 
diagrams, can be understood as elements in a “chain of reference” that ensures 
the legibility of the natural world by allowing us to move freely back and forth 
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between the material and the symbolic. As such, they are artificially created 
and then, nevertheless, serve as “raw data” again.4 They are released from their 
mimetic duties and become objects of empirical study as if they had naturally 
emerged from the concrete, material object under investigation. As Latour 
writes, the diagram 

is not realistic; it does not resemble anything. It does more than 
resemble. It takes the place of the original situation […]. Yet we 
cannot divorce this diagram from this series of transformations. 
In isolation, it would have no further meaning. It replaces 
without replacing anything. It summarizes without being able to 
substitute completely for what it has gathered. (Latour 1999, 67) 

In other words, in both Galison’s and Latour’s readings, the diagram—and the 
scientific image in general—“oscillates”; it is unstable and subject to forces that 
pull it in either direction. It “wants”—to invoke W. J. T. Mitchell (2005)—to 
be something it is not: the concrete, material object under investigation 
(Latour) or its abstract, symbolic description (Galison). 

This epistemic oscillation generally concerns both analog and digital images, 
but for Galison, the computer has rendered the “flickering exchanges” between 
the abstract and the pictorial more pronounced. The frequency of the 
oscillation is increased, as computation enables images to easily “scatter into 
data” and data to “gather into images”: neither “the ‘pictorial-representative’ 
nor the ‘analytical-logical’ exist as fixed positions. Instead, across a wide span 
of the sciences, we see that the image itself is constantly in the process of 
fragmenting and re-configuring. […] No longer set in motion only in moments 
of crisis, we find that ordinary, every-day science propels this incessant 
oscillation” (Galison 2006, 322). 

But no matter how “frictionless” computation renders the epistemic 
oscillation, we have to keep in mind, exactly with Latour, that every phase 
change requires, in image terms, a lossy conversion, a “violent representation” 
of reality, as Claus Pias (2003) calls it. The gaps between the abstract and the 
pictorial—as with those between the material and the pictorial—cannot be 
bridged; they can just be “jumped.” And every such jump requires human 
guidance and interpretation. Every time images scatter into data, or data gather 
into images, a thousand human decisions come into play, no matter the 
direction of the jump. 

Importantly, the image itself conceals these human decisions. They can be 
recovered only through forensic work, if at all. In other words, a fundamental 
epistemic opacity, a readiness to deflect how its knowledge is produced, already 

This point is later emphasized in Gitelman (2013), who understands it as a foundational fallacy of data visualization. 4 
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Figure 1: Black hole in the center of the Messier 87 galaxy 

Credit: Event Horizon Telescope Collaboration 2019 (CC). 

germinating in every image by virtue of its apparent concreteness, is brought to 
life where the frequency of the image’s epistemic oscillation increases through 
computation. 

Images at the Limits of Perception 
The famous “black hole image” from 2019 is a good example of this dilemma. 
The image’s only raison d’être is to give evidence for the symbolic equations 
that describe the phenomenon it represents. It exists on the threshold to the 
nonimage, as a last glimpse of what is pictorially possible, or, as Orit Halpern 
has put it, it “represents the figure of the terminal limits of human perception” 
(Halpern 2021, 229). Interestingly, Galison, at the end of “Images Scatter into 
Data, Data Gather into Images,” chooses the black hole as a metaphor to 
describe this exact threshold: 

General relativity gives a fascinating description of an object 
falling into a black hole. As the object approaches the event’s 
horizon—the point of no return—an outside observer sees that 
object slow down as it approaches the horizon, its image 
gradually shifting towards the red. Eventually the scene of the 
falling object freezes in dimming redness at just the instant it 
passes beyond the visible. That scene resembles ours. Just when 
the scientific image moves towards abstraction we are left with 
the last glimpse of a frozen picture and ignore what happens 
next. (Galison 2006, 323) 
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The black hole image can exist only because computation enables “data to 
gather into images,” the actual “photographic” process involving terabytes of 
data being rearranged (Event Horizon Telescope Collaboration 2019). Even 
without that knowledge, and without any intuition for the physical 
implications of an outrageous astronomical phenomenon like a black hole, 
however, it is immediately obvious that the image cannot be a “normal” analog 
photo (some equivalent of photons hitting a photon-sensitive medium), that 
it, instead, has to involve some advanced computational processes. And yet the 
image “wants” to be treated as if it were the result of photons hitting a photon-
sensitive medium. It does not give away its constructed nature, at least not 
within the image space. To not lie, it relies on contextualization. 

The epistemic opacity at play here becomes particularly obvious if we consider 
that we can easily approach the task of creating an image of a black hole from 
the other side of the material-to-symbolic continuum—for instance, with a 
physically based rendering system that allows the precise computation of light 
scattering for arbitrary objects. While, as Jacob Gaboury (2015) has pointed 
out, even physically based rendering has to make significant compromises to 
arrive at realistic results, one thing is obvious: between such two images, 
intuitively, there would be no way to tell which is which. Not because of 
sophisticated photo manipulation or 3D rendering techniques but because 
both images would represent a phenomenon at the threshold of what can be 
depicted in the first place, where, quite literally, on the event horizon, the light 
that would give birth to an image is stopped in its tracks. To quote Halpern 
again, the borderlands of perception require a “turn to automation and big 
data as modes of managing extreme uncertainty” (Halpern 2021, 232). It is 
here where GANs start to become relevant. 

Generative Adversarial Networks 
Generative adversarial networks5 leverage game theory (Goodfellow et al. 2014) 
to approximate the probability distribution that defines a set of images by 
means of a minimax game between two deep convolutional neural networks 
(LeCun et al. 1989; Krizhevsky, Sutskever, and Hinton 2012; LeCun, Bengio, 
and Hinton 2015). Effectively, GANs define a continuous noise distribution 

 which is mapped to a discrete data space (we could also say “image space”) 
via  where  is a “generator,” an “inverted” convolutional neural network 
that “expands” an input variable into an image, rather than “compressing” 
an image into a classification probability.  is trained in conjunction with a 
“discriminator,” a second deep convolutional neural network  that outputs a 
single scalar  which represents the probability that  came from the data 
rather than from 

Théo Lepage-Richer has analyzed the general importance of the notion of adversariality for the history of artificial intelligence in Lepage-Richer 
(2021). 

5 
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Less technically put: the generator  learns to transform any high-dimensional 
(e.g., 512-dimensional) latent vector  into an image, while the discriminator 
learns to distinguish such artificially created images from a set of “real” images. 
With Galison: data  gather into images  and images scatter into 
data  at every iteration of the GAN training process. At every 
iteration, an image is created and destroyed. The epistemic oscillation of digital 
images is thus the defining feature of generative adversarial networks. Also note 
that the system effectively learns a lossy compression:6 a high-dimensional data 
space with dimensions —for instance, a set of images—is compressed to 
be reproducible from a latent space with dimensions  Another aspect of the 
Galison-Latour model is thus operationalized in the technique. 

The original paper by Goodfellow (Goodfellow et al. 2014) demonstrates the 
potential of GANs by using them to synthesize new handwritten digits from 
the MNIST dataset. The MNIST dataset, however, has a resolution of 28 
× 28 pixels—that is, several orders of magnitude below standard photo 
resolutions—and scaling up the approach proved difficult. While a lot of effort 
was made, and a lot of “compute” was spent, to go beyond marginal 
resolutions, progress was slow (for machine learning) until very recently, when 
StyleGAN (Karras, Laine, and Aila 2018), a generative adversarial network that 
implemented several significant optimization tricks to mitigate some of the 
inherent architectural limitations, was introduced. Current-generation models 
like StyleGAN2 (Karras et al. 2019), which presents another improvement over 
the original StyleGAN, are now able to produce extremely realistic samples 
from large image corpora. 

But what kind of problem could such a system potentially solve? What kind 
of scientific application does a system have that has learned to “imitate” a 
certain kind of image, or, more precisely, that has learned the defining features 
of a certain set of images and is able to construct new samples from this 
information? As it turns out, these exact properties come in handy in the 
approximation of so-called inverse problems. Inverse problems are a broad class 
of problems in the sciences, where causal factors are to be reconstructed from 
a limited number of observations. When it comes to images, inverse problems 
often imply the reconstruction of an original image from a version that has 
been perturbed by noise (G. Wang et al. 2018; Z. Wang, Chen, and Hoi 2019). 
The inverse problem is the reconstruction of the noise function (i.e., of the 
exact signal that has altered the image)—the reconstruction of the original 
image, then, is trivial. GANs can facilitate such a reconstruction because they 
are generative classifiers (Ng and Jordan 2002): in theory, they can learn “an 
explicit low-dimensional manifold” for every “natural signal class,” based on 
multiple samples (Asim et al. 2020). 

GANs and related generative techniques like variational autoencoders have also been proposed as a solution for creating efficient compression 
algorithms—for example, in Cao, Wu, and Krähenbühl (2020) and Mentzer et al. (2020). 

6 
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Figure 2: Image of an imaginary person, produced with the StyleGAN architecture 

Going beyond the Deconvolution Limit with Pix2Pix 
Inverse problems commonly emerge where science deals with objects that need 
to be observed but that are somehow “out of reach.” In astronomy, which is 
concerned with objects that are often millions of light-years away, trying to 
obtain a “clear view” commonly becomes an inverse problem. Importantly, 
it becomes an inverse problem with solutions that are impossible to verify. 
To further complicate things, with the invention of more and more elaborate 
optical media, the most important inverse problem in astronomy has become 
the reconstruction of images that have been perturbed by noise produced by 
the very instruments that facilitate the imaging. Advanced telescopes enable the 
observation of previously unknown astronomical objects. As optical media, 
they shift the border of visibility (Kittler 2010). The images they produce, 
however, are subject to specific noise introduced by advanced telescopes only. 
We thus find ourselves in an interesting situation: observation and 
perturbation come from the same source and are often hopelessly entangled. 
Disentangling signal and noise thus becomes a difficult, nonlinear exercise: an 
area where artificial neural networks usually excel. 

An example is the “denoising” of images of galaxies. In a recent paper called 
“Generative Adversarial Networks Recover Features in Astrophysical Images of 
Galaxies beyond the Deconvolution Limit,” Schawinski et al. describe a GAN-
based technique to reconstruct images of galaxies that have been perturbed by 
“various sources of random and systematic noise from the sky background, 
the optical system of the telescope and the detector used to record the data” 
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Figure 3: Denoising of galaxy images 

Figure from Schawinski et al. (2017). 

(Schawinski et al. 2017, 110). The reconstructions facilitated by the technique, 
also called “GalaxyGAN,” transcend the deconvolution limit, according to the 
authors. 

The deconvolution limit sets a lower bound for all kinds of digital 
reconstructive techniques (not only in the image domain), based on the 
Shannon-Nyquist sampling theorem (Shannon 1949)—that is, a limit of what 
is “naturally” reconstructible from a limited amount of information. The 
deconvolution limit is a “hard” limit. Hence, transcending this limit has, for 
decades, been a topos in science fiction. The most prominent example is, of 
course, Blade Runner, where Harrison Ford gives voice commands to a 
computer system to almost infinitely “enhance” an image. From there on, 
transcending the deconvolution limit has become somewhat of an internet 
meme, with shows like NCIS intentionally exploiting the ridiculousness of 
infinite “enhancement.” Thus, it seems like there must be some sort of catch. 

To go beyond the deconvolution limit, Schawinski et al. propose to utilize 
a GAN that has learned a mapping from artificially degraded, noisy images 
to undistorted original images. The authors utilize an established GAN-based 
architecture for paired image-to-image translation for this task, called Pix2Pix. 
Pix2Pix was first introduced by Isola et al. (2017) and was the first application 
of GANs to the task of image-to-image translation that went beyond style 
transfer—that is, introduced semantic aspects to the translation process. If 
Pix2Pix is trained on the artificially created training set described in the paper, 
the network learns a mapping from noisy to “clear” images. The authors 
provide a thorough evaluation of their results as well, which shows that both 
quantitatively (compared to previous methods with PSNR, or peak signal-to-
noise ratio, as a measure) and qualitatively, the method works well. 

And indeed, at the very end of the paper, the authors point to some important 
limitations: “In general, the GAN fails on rare objects that were absent or low 
in number in the training set, stressing that the performance of our method 
is strongly tied to the training set; it cannot reconstruct features it has not 
learned to recognize.” Intuitively, this seems like an expected limitation. GANs 
cannot reproduce what they have not seen—that is, seen at least once in theory, 
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and seen a significant number of times in practice. Moreover, because a GAN 
latent space is essentially a lossy compression of an image space, some features 
inevitably get lost in the training process and thus cannot be reconstructed by 
the GAN. 

Here, suddenly, the inverse problem comes back to haunt the very mechanism 
devised to solve it. The defining feature of an inverse problem is the fact that 
information (about a signal) is missing, and it is impossible to know exactly 
what is missing. In the case of GANs, we cannot know which features are lost 
in the training process. There is no precipitate of unique artifacts, no list of 
special cases, no box of rejected samples. This means that essentially, one noise 
source has been replaced by another noise source. Other than the first noise 
source (the telescope), however, the perturbation introduced by the second 
noise source (the GAN) is entirely dependent on the training set fed to the 
mechanism. In other words, GANs are able to take the reconstruction process 
beyond the deconvolution limit only because they introduce epistemic priors, 
additional knowledge about the problem domain. These epistemic priors, 
then, define what “can be seen” with the GAN. 

To be clear: this is a widely acknowledged problem when it comes to inverse 
problems,7 and Schawinski et al. (2017) mention it specifically in their 
introduction: 

Deconvolution has long been known as an “ill-posed” inverse 
problem because there is often no unique solution if one follows 
the signal processing approach of backwards modelling. Another 
standard practice in tackling inverse problems like these is 
integrating priors using domain knowledge in forward 
modelling. […] In this paper, we demonstrate a method using 
machine learning to automatically introduce such priors. 

Similar disclaimers can be found in almost every paper that tackles “denoising” 
and the related problem of “super resolution.” But—and this is the crucial 
difference—the epistemic priors introduced by this method are concealed in 
the GAN. This means that GANs fail silently. The solution space facilitated by 
a GAN is a “dense” solution space: there is always a solution, as the generator 
has learned a mapping from all possible inputs to all possible outputs. GANs 
always give coherent answers, even if the question is ill-posed. While “regular 
noise” is an obvious perturbation, when it is removed by a GAN it is “secretly” 
replaced by the epistemic priors inherent in its latent space. The fact that the 
image remains perturbed, only in a different way, is concealed. While it thus 
seems like the GAN provides the “clear image” we desire, what we get is an 
image that “pretends” to be clear while being fully dependent on a set of 

In Offert (2020), I describe the case of face super resolution, arguing that there is no (nonmalicious) real-world use case for this specific 
application of GANs. 
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epistemic priors. This is how GANs “pass” as media. But in reality, looking at 
galaxies with a GAN is looking into the GAN latent space exclusively. GAN 
vision is not augmented reality, it is virtual reality. 

If GAN images were to serve as a means of discovery—for example, by 
facilitating the discovery of unknown properties of galaxies—we suddenly have 
to face the problem that the space of discovery in these images is exactly the 
latent space of the neural network that improved them: all that is potentially 
“unknown” about the galaxies in these images is modeled from existing data 
by the neural network. GANs, in a peculiar way, thus operationalize the 
epistemological distinction between invention and discovery by rendering the 
space of discovery a technically determined space. This determination is a 
historical determination: where GANs serve as a medium, what there is to 
know is what is already known. 

GANs thus not only amplify the frequency of the epistemic oscillation of 
digital images in the sciences, but they also amplify their potential to conceal 
the human decisions involved in the high-frequency back-and-forth between 
image and data. While the black hole images conceal only the specific technical 
process necessary to produce them, GAN-facilitated images can and do conceal 
whole corpora of images, a complete history of all the attempts to depict what 
they represent. The GAN-facilitated image is a “summary image” in Mitchell’s 
sense, a “piece of moveable cultural apparatus […] that encapsulates an entire 
episteme, a theory of knowledge” (Mitchell 1995, 49). 

Causing Cancer with CycleGAN 
So far, the problematic implications of GANs seem to have emerged from the 
unavailability of the objects under investigation: we could argue that black 
holes, galaxies, and the like invite, even require, some degree of epistemic 
imagination to become addressable. But in fact, we do not have to venture into 
space to see these implications at work. In recent years, GANs have become 
“human-centered,” to intentionally reframe the technical term, and have found 
their way into the medical field. 

In a recent paper, “Distribution Matching Losses Can Hallucinate Features 
in Medical Image Translation,” Cohen, Luck, and Honari (2018) describe a 
system based on CycleGAN (Zhu et al. 2017), a GAN-based approach to 
unpaired image-to-image translation. Other than Pix2Pix, CycleGAN does not 
require pairs of images (e.g., original and degraded) but simply two datasets 
of images from the two translation domains. Translation is learned by adding 
an additional “circular” constraint to the training process—that is, a constraint 
that makes sure that A can be translated into B and vice versa. In medical 

Latent Deep Space: Generative Adversarial Networks (GANs) in the Sciences

Media+Environment 11



Figure 4: “Hallucinated” tumors from unbalanced training sets in image-to-image translation models 

Figure from Cohen, Luck, and Honari (2018). 

imaging, where image-making is complex and expensive, attempts have been 
made to employ such techniques to translate between different variations of 
imaging techniques—for example, so-called “flair” and “T1” MRI images.8 

Cohen, Luck, and Honari now show that, if the training sets from both 
domains are unbalanced—for instance, if there are too many or too few images 
of cancerous tissue in one of the datasets—CycleGAN “hallucinates” features 
in the translated image. As the authors state, they “demonstrate the problem 
with a caricature example […] where we cure cancer (in images) and cause 
cancer (in images) using a CycleGAN that translates between Flair and T1 
MRI samples.” Moreover, in a thorough analysis of the amount of difference 
needed to induce such “hallucinations,” they show that the imbalance in the 
dataset does not have to be total (only cancerous tissue in one set and only 
healthy tissue in the other) but that there is a threshold where feature-different 
samples become irrelevant to the GAN. 

Visualizing Imagination with GAN-Made Natural Image Priors 
Importantly, the paper discussed above is one of very few examples dedicated 
to the limitations, rather than the seemingly infinite potential, of GAN-based 
techniques in medical imaging. In “Deep Image Reconstruction from Human 
Brain Activity,” for instance, Shen et al. (2019) describe a technique to 
(literally) “make sense of” MRI data of humans looking at, or imagining, 

The speculative nature of MRI images in general has been discussed, for instance, in Joyce (2010) and Jonas and Kording (2017). 8 
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images of objects. The approach is introduced by the authors as “a method 
for visual image reconstruction from the brain that can reveal both seen and 
imagined contents” and is part of a whole line of recent research seeking to 
“decode” brain activity9 into images or video (Le et al. 2021) with the help of 
deep neural networks. 

In the paper, a deep neural network is trained on tuples of “image looked 
at” and corresponding MRI data—that is, the training set consists of images 
and the brain wave responses of test subjects in an MRI machine looking at 
these images. Once trained, the network produces images from unseen MRI 
data, providing a visual approximation of a test subject’s imagination. Where 
do these images come from? They come from a GAN latent space. More 
technically, they are produced by utilizing a technique called feature 
visualization with natural image priors,10 which in turn uses a GAN latent 
space as search space to find the closest visual match for a targeted image. 

While the authors also run the experiment without using GAN images as 
natural image priors, interpretable images—images that show something in 
the literal sense of an identifiable object (“some thing”)—depend on the use 
of a GAN. Without it, the images that can be reconstructed barely resemble 
the forms seen or imagined by the person in the MRI machine: “While the 
reconstructions obtained without the DGN [deep generator network, the 
GAN] also successfully reconstructed rough silhouettes of dominant objects, 
they did not show semantically meaningful appearance” (Shen et al. 2019, 5). 

In other words, meaningfulness itself is necessarily restricted, again, to the 
latent space of the GAN. Moreover, the images seen by the study participants 
in the MRI machine come from the ImageNet dataset. This means that it 
is even “easier” for the GAN, which has also been trained on ImageNet, to 
produce “almost perfect” reconstructions, as it has been trained on the same 
dataset that the images it is reconstructing are taken from. As a pretrained 
generator from Dosovitskiy and Brox (2016) is reused instead of training a 
new generator on a subset of ImageNet omitting the test images, the generator 
necessarily “knows” the test images already, albeit only through their 
contribution to the learned probability distribution. Whatever the person in 
the MRI machine is thus imagining, it is expressed in terms of the legacy GAN. 

GANs as Engines of Scientific Speculation 
One could rightfully ask, then, if GANs can ever have a place in science at 
all—if their incredible potential to conceal is not fundamentally opposed to 
scientific principles. At the end of the day, all GAN images are “deep fakes,” 

The historical and epistemological entanglement of AI and neuroscience warrants a separate investigation that lies outside the scope of this 
paper; see, for instance, Bruder (2017, 2019). 

Feature visualization by itself is a highly speculative visual interpretability technique, as shown in Offert and Bell (2020b). 
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images designed to deceive.11 One could argue, then, that the only real benefit 
of GANs is exactly their tendency to capture and distort, in interesting ways, 
what is already known. The fact that the black hole image has been acquired 
by the Museum of Modern Art, in New York, already speaks of this aesthetic 
potential. And more recently, contemporary artists working with artificial 
intelligence have explicitly turned to GAN images in the sciences12 to generate 
speculative environments. 

French artist Pierre Huyghe, for instance, utilized the methods described in 
Shen et al. (2019) to create images for his UUmwelt exhibition, originally 
shown at Serpentine Gallery and reexhibited in 2021 online under the title Of 
Ideal, facilitated by Hauser & Wirth. The images were created in collaboration 
with the Kamitani Lab at Kyoto University, where the paper by Shen et al. 
originated.13 In the original exhibition space, the images are presented as video 
loops that capture the optimization process (the latent space search) of the 
GAN system, juxtaposed with one hundred thousand flies occupying the 
gallery space. Temperature, humidity, smell, and sound are also controlled 
elements in this hybrid digital-organic environment, mirroring previous works 
by Huyghe, like After ALife Ahead at Skulptur Projekte Münster 2017. The 
gallery becomes “a porous and contingent environment, housing different 
forms of cognition, emerging intelligence, biological reproduction and 
instinctual behaviors.”14 And it is through these organic elements that the 
exhibition emphasizes the distorted nature of the reconstructions shown and 
their inadequacy as representations of thought. 

Another example is Tega Brain’s 2019 installation Asunder. Asunder is a three-
channel video installation that speculates on the potentiality of climate 
interventions. In the installation, a neural network is used that has learned to 
generate imaginary satellite images according to certain parameters. Real-life 
satellite images are changed by this network to suggest radical geoengineering 
interventions: removing the city of San Francisco, planting trees in the desert, 
rerouting rivers. The resulting composite image is then fed into a scientific 
climate model, which runs on a high-performance computer in the exhibition 
space, and the resulting changes in the global climate are displayed. The work is 
relevant exactly because it puts the peculiar epistemic implications of GANs on 
their feet: the speculative nature of inverse problems is embraced, and utilized 
to project the ridiculous exit strategies that humankind still has left. The literal 
“alienated” perspective of machine learning systems is transformed into 
productive “alienation” in the Brechtian sense. 

If we accept the inevitability of this deceptive quality, other potential mitigation strategies emerge, like the utilization of techniques from 
interpretable machine learning/explainable artificial intelligence. See Bau et al. (2018, 2019); Offert and Bell (2020a, 2020b). 

For an overview of the recent emergence of a separate field of “AI art,” see Offert (2019, 2022). 

Pierre Huyghe in conversation with Hans-Ulrich Obrist, https://vip-hauserwirth.com/online-exhibitions/pierre-huyghe-of-ideal/. 

See https://vip-hauserwirth.com/online-exhibitions/pierre-huyghe-of-ideal/. 
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Figure 5: Pierre Huyghe, study for UUmwelt, 2018 

Image courtesy of the artist © Kamitani Lab / Kyoto University and ATR. 

Figure 6: Tega Brain, Asunder, 2019 

Credit: Tega Brain, 2019. 

What is clear, regardless, is that GANs in particular, and machine learning 
in general, present a new kind of trading zone within, or even replacing, the 
trading zone of computer simulation, quite literally living up to Peter Galison’s 
idea that “the computer came to stand not for a tool, but for nature itself” 
(Galison 2011, 157). The wide adoption of machine learning across the 
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sciences indeed links “by strategies of practice [what] had previously been 
separated by object of inquiry” (Galison 2011, 157). We can find evidence 
for this transformation in the increasing appearance of “general” scientific 
machine learning approaches: in machine learning systems learning to solve 
partial differential equations (Li et al. 2020), gaining theorem proving 
capabilities (Polu and Sutskever 2020), adopting symbolic mathematics skills 
(Lample and Charton 2019), or acquiring specialized domain knowledge just 
from “reading” the relevant literature (Tshitoyan et al. 2019). 

While none of these general approaches are based on GANs, the epistemic 
implications of GANs described in this paper point to a much deeper problem 
that is architecture independent: the idea that learning from examples is a 
sufficient approach to modeling the world might be irreversibly flawed. This is 
not a new insight. In fact, the question if we need to reintegrate (at least some) 
innate skills—physical intuition, shape preference, symbolic reasoning—into 
machine learning systems has been widely discussed since at least 2017 and 
has attracted some vocal support (Marcus 2020) and some interesting new 
technical proposals (Sabour, Frosst, and Hinton 2017; Lake et al. 2017; 
Geirhos et al. 2019). What a close reading of GANs can tell us, then, is how 
this purely technical discourse is also a discourse about the epistemic faculty of 
technical images, and how the existing flaws of technical images are amplified 
in these contemporary mechanisms. 
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